RIXS : Experiments

5

cnrs

Jean-Pascal RUEFF

ARTINE STRAFT

The RIXS landscape

J.-P. Rueff - GDR Mico - 2009

Is it possible to...

- □ Acquire soft x-ray spectra with a hard x-ray probe ?
- $\hfill\square$ See under the white line ?
- □ "Image" the chemical environment ?
- □ Probe forbidden transition, ... and their dispersion ?
- $\hfill\square$ Do spectroscopy in constraint sample environments ?
- $\hfill\square$ Measure phonons with x-rays ?

 \square Acquire soft x-ray spectra with a hard x-ray probe ?

Fig. 3. Photomicrograph showing indention (ring crack) of diamond anvil by the high-pressure form of cold-compressed graphite.

 \square See under the white line ?

 \square "Image" the chemical environment ?

Mn complexes- Mn K edge / K α emission

\square Probe forbidden transition ?

 \square Do spectroscopy in constraint sample environments ?

J.-P. Rueff - GDR Mico - 2009

Crystal Momentum

Outline

- Motivations
- Introduction: a Reminder
 - Non-resonant IXS
 - RIXS
- Applications
 - High pressure
 - Coordination Chemistry
 - Strongly correlated materials
- Perspectives
 - -New experiments

INTRODUCTION

General principle

There are only three basic actions to produce all the phenomena associated with light and electrons: A photon goes from place to place, an electron goes from place to place, an electron emits or absorbs a photon, QED, Richard Feyman

$$\hbar\omega = \hbar\omega_1 - \hbar\omega_2$$
 Transfer energy

 $q \approx 2k_1 \sin(\theta)$ Transfer momentum

Overview

-Dynamical structure factor $~S({f q},\omega)$

$$S(\mathbf{q},\omega) = \sum_{i,f} \left| \langle f | \sum_{j} \exp(i\mathbf{q} \cdot \mathbf{r}) | i \rangle \right|^{2} \times \delta \left(E_{f} - E_{i} - \hbar \omega \right)$$
$$\exp(i\mathbf{q} \cdot \mathbf{r}) = 1 + i\mathbf{q} \cdot \mathbf{r} + (i\mathbf{q} \cdot \mathbf{r})^{2}/2 + \dots$$

 ${f q}\,$ plays the role of $\,\epsilon\,$

(nr)IXS

J.-P. Rueff - GDR Mico - 2009

Resonant IXS

•Kramers-Heisenberg equation

•Kramers-Heisenberg equation

APPLICATIONS

Bonding changes under pressure

graphite

 $B_{2}O_{3}$

Spin state transition in transition metal

 $K\beta$ - XES

- > local probe of the 3d magnetism in transition metal
- > No applied magnetic field
- > Compatible with high pressure
- > $L\gamma_1$ emission in rare-earth for 4f magnetism

 $\hbar\omega_{2}$

- 100% of Fe³⁺

2p3d - RXES

- > Core hole potential separates the different mixed states
- > Sharpening effect due to resonant effects
- > Great accuracy in the determination of the valent state
- > 4f,5f systems

Mixed valent state: TmTe under pressure

Nature of the Pre K-edge in TM oxides

1s2p - RXES

Other screening process

Perforated diamonds pressure \mathbf{M} ⇔ 500 µm **XAS** - transmission increasing pressure 400 ature (K) PI duet 200 PM Intensity (arb. unit) 100 AFI .04 0.02 (V_{1-x} M_x)₂ O₃ 0.02 + Ti doping concentration С В P = 0 kbar ΡI

P = 11 kbar

5474

5472

ΡM

5476

Α

5468

5470

Photon energy (eV)

5466

5464

DMFT Incoherent part

Two metallic phases : P different from T

dd excitations in transition metals

NiO

S. Chiuzbaian et al., PRL (2005); Ghiringhelli et al., PRB (2006)

Magnetic excitations viewed by x-rays

SLS

3

phonons in actinides

> encapsulated single crystals : ²⁴²PuCoGa₅ :

J.-P. Rueff - GDR Mico - 2009

S. Raymond, Phys. Rev. Lett. (2006)

S. Raymond et al. (2009)

J. Bouchet, Phys. Rev. B, 77, 024113 (2008)

J.-P. Rueff - GDR Mico - 2009

ALS

O-binding and molecular conformation

Kα XES

water

nature of photosystem II complexes

1s3p - RXES

PERSPECTIVES

IXS stations world wide

(soft x-ray / hard x-ray)

Ring	Nbr	Beamline	Energy range	Country
ESRF	4	ID8 / ID-16, 26, 28	0.4-1.6 keV / 5-23 keV	France
Spring-8	1	BL12XU	5-30 keV	Japan
APS, SSRL, ALS	4	IXS-CAT, BL 6.2; BL 7.0	5-25 keV / 0.06-1.2 keV	USA
NSLS-2		IXS beamline*	> 5 keV	
MAX II	1	I5-11	0.05-1.5 keV	Sweden
Elettra	1	IUVS	5 - 11 eV	Italy
SLS	1	ADDRESS	0.4-1.8 keV	Swiss
SOLEIL	2	MicroFocus* / <u>GALAXIES</u> *	0.05-1.5 keV / 2-12 keV	France

(*) not yet operational 2010 / 2011

GALAXIES beamline at SOLEIL

Inelastic x-ray scattering and Electron spectroscopy

- U20 undulator, energy Range : 2.2-12 keV
- Two experimental stations
 - RIXS
 - HAXPES
- High resolution $\Delta E = 100 \text{ meV} 1 \text{ eV}$
- Micro Focalization:
 - > High-Flux: $80 \times 35 \ \mu m^2$
 - > Micro-Focus: $5 \times 5 \ \mu m^2$

Acknowledgements

F. Rodolakis, J. Ablett, F. Baudelet J.-P. Itié

S. Raymond, D. Braithwaite, G. Knebel

P. Glatzel, M. Sikora, G. Monaco, G. Vanko, M. Mezouar, M. Krisch, I. Alliot, J.-L Hazemann

J. Badro, A. Shukla, M. D'astuto

I. Jarrige, Y. Cai, H. Ishii M. Taguchi

M. Marsi, P. Wzietek

M. Haverkort, Ph. Hansman K. Held

C. Hague, J.-M. Mariot

C. Dallera, E. Annese, L. Braicovich